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In this paper we propose a new theory of a fiber bundle provided with a local 
metric of internal space. The fibers differ from usual fibers, having an enlarged 
factor. The enlargement may be procured by a differential mapping ~b(x) from 
structure group G to the fiber F:, at x e M, and ~b(x)E R. The torsion presented 
stems from the local metric of internal space and the local metric stems from a 
induced mapping ~b,(x) of r From the theory we can get the Brans-Dicke 
theory with torsion. If we assume the spin density of the gauge field determines 
the enlarged factor of the fiber V~, our theory is an extended Caftan theory. 

1. I N T R O D U C T I O N  

The gauge theory is related to the profound concept  of the mathemat i -  
cal theory of fiber bundles (Wu and Yang, 1975, 1976). It was pointed out 
first by Ut iyama  (1956) and then by a number  of physicists (e.g., Sciama, 
1962) that gravitat ion theory can be looked upon  as a non-Abelian gauge 
theory, and it becomes possible to develop and generalize Einstein's theory 
of gravity. In recent years, on account  of the development  in superstring 
theories, higher-dimensional theories have been paid more  and more  atten- 
tion. Cho (1975) proposed a higher-dimensional unification of gravitat ion 
and gauge theory. Madore  (1990) presented a modification of  the tradi- 
tional Kaluza-Kle in  theory by a noncommuta t ive  geometry based on a 
semisimple algebra. In his article the union of  space-time and an internal 
space was described by the principal bundle. 

The Eins te in-Car tan  equations with torsion were also obtained from 
some gauge theories (Kibble, 1961). Kalinowski (1981) generalized the 
Car tan  torsion to higher-dimensional  Kaluza-Kle in  theory. 
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Nevertheless, what is the geometric cause producing torsion in these 
theories and what is the physical cause? These questions so far have had 
no satisfying answer. The purpose of this paper is to find the geometric and 
physical causes. 

2. CHOICE OF THE BASIS IN THE PRINCIPAL FIBER B U N D L E  

We introduce a (4 + n)-dimensional Riemann-Cartan space; its quotient 
space by the equivalence relation of group transformations is the usual 
4-dimensional space-time, and the enlarged space is a principal fiber bundle 
space. We denote the principal fiber bundle as P(M, G), where M is the 
base manifold and G the structural group. Now we define a differential 
mapping ~(x) from G to the fiber Fx at x �9 M, 

~b(x): aeG-+ p(x, (~(x)a)�9 (1) 

and ~b(x) �9 R. Therefore we get a new principal fiber bundle P(M, F) by the 
differential mapping ~b(x). 

First let us choose a coordinate basis ~ = ~ for the base manifold M, 
whose commutation relations are trivial, 

[~ , ,  C ]  = [a, ,  a~] = o  

For a basis of G, choose a set of n linearly independent left invariant vector 
fields 4i (i = 5 --+ 4 + n) on G. These 4i can also be viewed as a basis of the 
Lie algebra ~ of G. The commutation relations of these vector fields are 

= f , j4k  

where the f ~  are structural constants of G. 
Next we shift 4, , �9  ) and 4~e~ to the tangent space of the 

principal fiber bundle at p e P by the induced mappings, respectively. 
Notice that the ~-valued connection 1-form m is defined as 

~o: 4" �9 %(F,~) + ~i �9 cd (2) 

Using the induced mapping ~b,(x) of ~b(x) and the converse mapping of a;, 
we can shift 4i �9 ~q to Tp(Fx), 

O,(x) o~-': 4, �9 r --* (, = (~,(x) 4" e Tp(rx) (3) 

Because ~p(Fx) is an isomorphic Lie algebra of G, ~p(F~) is denoted as the 
Lie algebra of the tangent space at p e Ft .  Therefore 

[r y, ~ * ] -  , , 
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and we have 

[(,, 4,] = ~,(x)  f ~ k  = F~(x) ~k (4) 

where F~.(x) are still constants at the fixed point x, F~(x)= (b,(x)f~. The 
shifting of {~ can be procured by the usual method called a horizontal lift. 
We know that the tangent space Tp(P) of the principal fiber bundle at p c P 
is the direct sum of Vp and Hp, where we denote Vp as the space of vertical 
vectors that is tangent to the fiber F~ at p ~ K~, and Hp as the space of 
horizontal vectors. Notice that the fiber over x is defined as zt-X(x)= F ,  
also, 

~-1: x ~ M ~ I ( x )  eF~ 

The induced mapping of r~p I is 

dZcp': { v e T ~ ( M ) - + ~ = d =  - l { ~ e H p  (5) 

From the induced mapping dzc7 l, we give a connection B(P) over the 
principal fiber bundle 

(~ = D~ = 0,~ - B~ ~ ~ lip (6) 

Since the space Tp(F~) is tangent to F~, we have Vp = Tp(F~). 
Through the above discussion, we choose ((~, ~ )  as a basis set of the 

principal fiber bundle at p e P. 

3. C H O I C E  O F  A M E T R I C  

We assume that M is a metric manifold with the metric g~,,.; for 
internal space we choose the metric lo., 

Iij(x) = F*i,(x) " 2 Fkj(x ) = {b,(x) r/~/ (7) 

where r/U is the Minkowski metric; evidently the internal metric I~ is 
diagonal and 

~2(x) Ilsj [ = (8) 

We call the metric gab on the bundle P compatible with the metric guy and 
G if 

(9) 
gab~ "b ~ = 0  (a,b= l -+4+n)  



1622 Li 

In the horizontal lift basis (~,  ~ ) ,  g~b can be written as 

g //g,~ 0 )  (10) 
ab = ~ 0 [ij 

We see that the internal metric I~ is a local metric; it depends on the 
coordinates of space-time. 

4. THE C U R V A T U R E  OF THE B U N D L E  P 

The curvature tensors R~.~ of the bundle P are defined from the 
�9 ~ satisfy connection B~ and local structural constants Fjk(x), the R~,. 

[Du, D,]  = -- R',,. (, (11) 

R',v : O.B'~-  OvB'~, +.FjkB~B~ (12) 

~iRipv~__ j k (13 )  - F i k R , ,  

Through serial calculating, we find connections and Ricci tensors as 

~.i = 1 i ^ v 1_ cr#P[. .R j 
~v - - ~ R u v ,  F / o =  2 o  - v - ~ p  

" 1 [ ' i  . =  lrik,~ I (14) 

f ' k  1]grn [ k n [  4- l l5"m [ k n [  A- 1 k 
ij = 2- -n i - -  --mj - -  2--nj--  --mi - -  g f  ij 

and 

e#v 1 p2 i k 1 ik ik = R ~ ( M )  + ~g IikRpvR~, ~ -  ~Ov(I O~,I ) 

1 ik jm I F ) .  lik,~ T 
- -  "~1 [ ~ v l j k ~ u l i r n  AI- 2 ,uv Jt t~2"ik 

(15) 
R i k  = - - l g U p g V ; ' l k m l i n R ~ Z p R n ~ ; ~ -  1F~, gVPOpl ik  

-]- l g'UPlJm(O p l i m O  p [ j  k -[- O a l k m O  p I  O. - -  O u Z j m O p l i k  ) 

Finally, we find the scale curvature of the bundle P, 

= R ( M ) -  ! . .v . .pZ. o~ ok  2g,VV~,(_i)~/2/(_i)~/2 4,5 ,5 ~ika~vpl~#2 - -  

+ g~US~ ( _i)1/2 8v (_I)l/z/(_I) + l c~#v"3 riJ"~ l (16) 

where I = det(I~i). 

5. THE ACTION INTEGRAL 

The Einstein-Hilbert action integral S.+4 of the bundle space P is 
written as 

I (g)1/2/~ d4x dV~ S n + 4  (17) 
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for convenience we denote 

Sn + 4 : S1 -~ 32 -~- 83 

where 

= f d4x  dr , ,  (g),/2 R ( M )  $1 d 

f la,uv~p21 R i k S 2 =  d4x  dV~ (g)~/2 ( 4~ s ~,k ~pR~.) 

f a4x  d V  n ( g ) l / 2  g~Va~ ( [)1/2 a , , ( - I ) l / 2 / ( - I )  1 (j $3 = --  + ~ I ,  ~ I ~ )  

Taking the gauge potential Bi~ as variable, we get the variation of the 
action S,, + 4 equal to the variation of the action $2. From aSh + 4 = 6S2 = O, 
we get a generalized equation of the gauge field 

~(c , i /2R#v]__lg ' i  m 1/2 pv ( 1 8 )  #t6  ~'k J - - ~ k m B p  g R i  

1 ). 3. Taking the torsion T~v=~(F~v-Fv~ ) as variable, we have the field 
equation of the torsion from c5S,,+ 4 = 6S1 = O, 

2 1 l/2 T.v = ~ [c~ . ( - I )  6 ~ / ( - I )  ~/2 - 8 v ( - I )  1/2 c5~/ ( - I )  1/2] (19) 

Formula (19) shows that the torsion of space-time stems from the local 
metric of internal space. 

6. DISCUSSION AND CONCLUSION 

We have established a new theory of the principal fiber bundle which 
is a higher-dimensional unification of the gauge theory and gravitation 
with torsion. Here the fiber bundle is provided with a local metric of inter- 
nal space. Every fiber has a enlarged factor r the enlarged fibers can be 
depicted in an intuitive geometric way. If we assume that the fiber is one- 
dimensional, it can be seen in Fig. 1 that every fiber on M possesses a 

Fig. 1. Every fiber on M possesses a different length. 
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different length; in other words, the fibers have been drawn out like elastic 
and all the fibers are no longer the same. This is the difference between the 
bundle P(M, G) and the bundle P(M, Fx). 

It must be pointed out that due to the above introduction of a 
mapping structure to the bundle P a local metric appears in internal space. 

As we know the induced mapping ~b,(x) of ~b(x) is a scale function of 
space-time, it can give a local vector field aj>,(x)/O,(x) at a local 
neighborhood of x. If we assume that the spin density vector S~ of the 
gauge field determines the local vector ~b , /~b ,  i.e., 

s,, = (]n/~) o , ~ , / 4 ,  (20) 

then from equations (19) and (20) we easily get the known Cartan 
equation 

T, = ~cS, (21) 

where ~ is a constant. From here we see that our theory is an extended 
Cartan theory in a gauge field with spin. 

In addition, if we integrate over all the internal space in the action 
(17), we get 

S,,+4 = V,,SBo + $2 (22) 

where SBD = S dx4 (_g)1/2 (Rq/--~,,O~/O), and we have taken O = ( - I )  1/2. 
Here SBD is the Brans-Dicke action. 

For the field equations of torsion we have 6Sn + 4 = 6SBD = 0. There- 
fore the Brans-Dicke theory (Rhamand etal., 1988) with torsion is 
included in our theory. 

Finally, we comment on the term S 3 in the action S,+4. Using 
formulas (7) and (20), we rewrite $3 as 

$3 = f dx4 dVn g~/24K2S"S~(1 + 1/n)/9 (23) 

The formula (23) shows that the term $3 describes a spin self-interaction 
of the gauge field. In consideration of the physical significance of S~ and $2 
the theory of principal fiber bundles can simultaneously describe gauge 
field gravitation with torsion and the self-interaction of the spin of the 
gauge field. We have found an important geometric object between the 
torsion and the spin of a gauge field. This geometric object is just the local 
metric of internal space. 
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